

By: C. J. Date

Date: 5/1/2000

Twelve Rules for
Business Rules

Introduction

This paper has to with what are commonly called
business rules. Its purpose is to propose a set of rules
about such rules—rules that, it is suggested, a “good
rule engine” really ought to abide by. Such rules about
rules might well be called metarules; they might equally
well be described as objectives; however, this paper refers
to them as prescriptions.

Disclosure

This paper was prepared under an agreement with
Versata Inc., a company that has a business rule
product to sell. However, it has categorically not been
written in such a way as to “make Versata look good”;
the various prescriptions it describes have been
designed without any special reference to the current
commercial scene in general or Versata’s product in
particular. In other words, the paper serves to
document the writer’s own opinion merely—the
writer’s opinion, that is, as to what business rule
products ought to strive for in the future.

Assumptions

It is convenient to begin by stating some underlying
assumptions and introducing some terminology:

■ The purpose of any given piece of application
software—an application for short—is to implement
some enterprise work item (i.e., some piece of func-
tionality that is relevant to the enterprise in question).

Note: The term application is used in this paper in a
very loose kind of way; thus, a given application might
be a simple subroutine (e.g., a function to calculate
withholding), or a large collection of mutually interacting
programs (e.g., a fully integrated corporate accounting
system), or anything in between.

■ The enterprise work item in question is specified as a
set of definitions (data definitions, access definitions,
form definitions, and so forth).

■ To the maximum extent logically possible, those defini-
tions are declarative—i.e., nonprocedural—in nature.
They are also formal (necessarily so, of course). In what
follows, they are referred to as business rules, or just
rules for short.

Note: The reason for the slight degree of hesitancy in the
foregoing paragraph (“To the maximum extent logically
possible”) is that the rules in question might include
certain stimulus/response rules, which do include an
element of procedurality (see Prescription 3, later).

■ Business rules are compilable—i.e., mechanically
convertible into executable code—and hence, loosely,
executable. In other words, the set of rules that consti-
tutes the declarative specification for a given application
is the source code for that application, by definition
(pun intended). Thus, the activities of (a) specifying or
defining the application, and (b) developing or building
it, are in fact one and the same.

Note: It follows from the foregoing that, so far as this
paper is concerned, the terms rules and business rules
are reserved to mean rules that can be automated.
Other writers use the term more generally. For example,
the final report of the GUIDE Business Rules Project [3]
defines a business rule to be “a statement that defines
or constrains some aspect of the business.” By this
definition, a statement to the effect that the last person
to leave the premises must turn off the lights might
qualify as a business rule—but not one that is very
interesting from the point of view of business automation.
To put the matter another way, not all business policies
and protocols are capable of being automated, and this
paper is concerned only with ones that are.

■ Finally, the software system that is responsible for
compiling and overseeing the execution of such declar-
atively specified applications is called the rule engine.

A Note on Terminology

It is, unfortunately, undeniable that the term rules is
not a very good one (certainly it is not very specific,
nor very descriptive). And the term business rules is not
much better; in particular, not all enterprises are busi-
nesses. As already indicated, this paper does make use
of these terms; however, it does so primarily because
other publications in the field do so too! Be that as it
may, the really important point is that the technology
under discussion is a declarative one. To be more
specific, rules, whatever they might be called, are
declarative, not procedural, in nature: Application soft-
ware—possibly some system software too—is specified
declaratively, and the resulting declarative specifications
are directly compilable and executable.

Further Preliminary Remarks

It might be felt that prescriptions such as the ones to
be discussed in this paper ought all to be independent
of one another. After all, such independence is surely
desirable for the same kinds of reasons that the prescrip-
tions themselves demand certain kinds of independence
in business rule systems. However, it turns out to be
more convenient to state the prescriptions in a kind
of layered fashion, with later ones building on earlier
ones; thus, the various prescriptions are not, nor are

Twelve Rules for Business Rules
© 2000 C. J. Date. All rights reserved.

2 |

Twelve Rules for Business Rules

they claimed to be, fully independent of one another,
despite any possible advantage that might follow from
trying to make them so. What is more, some of the
prescriptions overlap others (that is, some require-
ments are stated in more than one place, in more
than one way).

Now, many readers will be aware that there are prece-
dents for a paper of this nature. What is more, some
of those precedents have become a little discredited
over time, and the writer is therefore sensitive to the
possibility of criticism (especially criticism along the
lines of “oh no, not again”1). But business rule systems
are becoming increasingly important, and it does
therefore seem worthwhile—the foregoing comments
notwithstanding—to attempt to provide some structure
for the debates that will inevitably arise in the market-
place. Thus, what follows is offered as a kind of yard-
stick, or framework, that might conveniently be used
to orient such debates; equally, it is proposed as a basis
against which business rule systems might be “carefully
analyzed, criticized, evaluated, and perhaps judged”
(wording cribbed from reference [2]).

That said, however, there are a couple of important
caveats that need to be spelled out immediately:

■ The prescriptions that follow are emphatically not
intended as a basis for any kind of “checklist” evaluation.
To say it again, they are offered as a framework for
structuring discussion and debate; they are definitely
not meant as a basis for any kind of scoring scheme.
(Statements to the effect that “Product P is x percent of
a good business rule system” are not only absurd but
positively harmful, in this writer’s very firm opinion.)

■ There is no claim that the prescriptions that follow are
complete or exhaustive in any absolute sense. Indeed,
they are meant to be open-ended, in general. That is
to say, anything not explicitly prescribed is permitted,
unless it clashes with something explicitly prohibited;
likewise, anything not explicitly prohibited is permitted
too, unless it clashes with something explicitly
prescribed.

The list of prescriptions follows immediately.

Note: Some of those prescriptions (the first two in
particular) just repeat certain assumptions already
spelled out above; however, the assumptions in question
are sufficiently important as to deserve elevation to the
status of prescriptions per se. The final section of the
paper (before the acknowledgments) presents a summary
of the entire set of prescriptions.

1. Executable Rules

Rules shall be compilable—see Prescription 10—
and executable (even when the rule in question is
basically just a data definition rule, as in the case of,
e.g., CREATE TABLE in SQL).

2. Declarative Rules

Rules shall be stated declaratively. The rule language—
i.e., the language or interface that supports such
declarative specifications—shall be expressively
complete; that is, it shall be at least as powerful as
a sorted, two-valued, first-order predicate logic. To
elaborate:

■ “Sorted” here might better be typed (but sorted is the
term logicians use for the concept). It refers to the fact
that any given placeholder in any given predicate must
be of some specific “sort” or type; i.e., its permitted
values must be exactly the values that make up some
specific data type (or domain—the terms type and
domain mean exactly the same thing [1,2], and they
are used interchangeably in this paper).

■ “Two-valued” refers to the two truth values true and
false.

■ “First-order” refers to the fact that (as already stated
under the first bullet above) any given placeholder in
any given predicate must take its values from, specifi-
cally, the set of values that make up some data type,
not, e.g., the set of values—i.e., the set of relation
values—that is the set of relations currently appearing
in the database.

In addition, the rule language shall be constructed
according to well-established principles of good
language design, as documented in, e.g., reference
[2]. In particular, it shall exhibit both (a) syntactic
and semantic consistency and (b) conceptual
integrity (again, see reference [2] for elaboration
of these desirable properties).

Twelve Rules for Business Rules
© 2000 C. J. Date. All rights reserved.

| 3

Twelve Rules for Business Rules

1 Especially since, as it happens, the number of prescriptions is exactly twelve.

3. Kinds of Rules

Rules shall be loosely divisible into three kinds, as
follows:

■ Presentation rules, which have to do with interactions
with the application user (they include rules for displaying
interactive forms to the user, rules for accepting filled-out
forms from the user, rules for controlling form
transitions, rules for displaying error messages to the
user, and so forth);

■ Database rules, which have to do with defining data-
base data, retrieving and updating database data in
response to user requests and user entries on interactive
forms, specifying legal values for such database data,
and so forth;

■ Application rules, which have to do with the processing
the application needs to carry out in order to implement
the enterprise work item. (Application rules are some-
times referred to as business—or application—logic,
but these terms are deprecated and not used further
in this paper.)

Note: It is not always easy to say whether a given rule is
a database rule or an application rule, which is why the
foregoing categorization is proposed as a loose one only.

Database and application rules shall include computa-
tions, constraints, and inference rules.

■ A computation is an expression to be evaluated. The
result can be named or can be assigned to one or more
variables.

■ A constraint—frequently referred to more specifically
as an integrity constraint—is a truth-valued expression
(also known as a conditional, logical, or boolean expres-
sion) that, given values for any variables mentioned in
the expression, is required to evaluate to true.

■ An inference rule is a statement of the form p |- q
(where p and q are truth-valued expressions and “|-”—
sometimes pronounced “turnstile”—is a metalinguistic
or metalogical operator) that, given the truth of p, allows
the truth of q to be inferred.

Note: If q is regarded, as it clearly can be, as a truth-
valued function, then the inference rule can be regarded
as a (not necessarily complete) definition of that function.

By the way, inference rules as just defined should not
be confused with truth-valued expressions of the form
p ⇒ q (where p and q are truth-valued expressions and
“⇒ ”—sometimes pronounced “implies”—is the mate-
rial implication operator of predicate logic). The expres-
sion p ⇒ q is defined to evaluate to true if and only if p
is false or q is true (equivalently, it evaluates to false if
and only if p is true and q is false). Such an expression
might constitute an integrity constraint (e.g., “e is an

accountant ⇒ e earns more than $45,000 a year”). By
contrast, an inference rule actually defines q in terms
of p (e.g., “e is an accountant |- e is a white-collar
worker”).

The following edited extract from reference [4] might
help to clarify the foregoing distinction: “Do not
confuse |- with ⇒ . The sign |- is a symbol of the meta-
language, the language in which we talk about the
language that the formation rules have to do with. It
makes sense to speak of the formula p ⇒ q as being
true in some state of affairs or false in some other state
of affairs. However, it makes no sense to speak of p |- q
as being true in such-and-such state of affairs; the truth
of p |- q has nothing to with states of affairs but with
whether the system of logic in which we are operating
allows us to infer q from p.”2 (A state of affairs can be
thought of, loosely, as an assignment of truth values
to available atomic formulas.)

The foregoing discussion notwithstanding, it might be
desirable in practice (for reasons of user-friendliness,
perhaps) for inference rules and material implication
expressions both to use the same syntax, viz., IF p
THEN q. Thus, “IF e is an accountant THEN e is a
white-collar worker” could be an inference rule,
asserting that the fact that e is a white-collar worker
can validly be inferred from the fact that e is an
accountant. By contrast, “IF e is an accountant THEN e
earns more than $45,000 a year” could be an integrity
constraint, asserting that the database must show e’s
salary as being more than $45,000 a year if e is an
accountant (and any update operation that would
cause this constraint to be violated must be rejected).
Of course, if inference and material implication do
both use the same syntax, then context will have to
provide a means of distinguishing between the two.

Database and application rules might possibly also
include stimulus/response rules—i.e., rules of the
form IF p THEN DO q, where p is a truth-valued
expression and q is an action (of arbitrary complexity,
in general; e.g., ”send a message to the customer”
might be a valid action, in suitable circumstances).
However, such rules at least partially violate
Prescription 2, inasmuch as they are at least partially
procedural, and they should be used sparingly and
with caution.

Note: Stimulus/response rules correspond to what are
more frequently referred to as triggers. The idea is that
the triggered action q is to be carried out whenever the
triggering event p (meaning “p is true”) occurs. The
keyword IF might more appropriately be spelled WHEN
in some situations.

Twelve Rules for Business Rules
© 2000 C. J. Date. All rights reserved.

4 |

Twelve Rules for Business Rules

2 Yet another way of thinking about the statement “p |- q” is as a proof: “q is provable from p.”

By the way, it is not necessary that rules be “atomic”
in any sense, at least from the user’s point of view.
That is, if p and q are business rules, then (e.g.) p AND
q is a business rule too. (Rule atomicity might be
important from the point of view of the underlying
theory or from the point of view of some implementa-
tion or both, but it should not be of much concern to
the user.)

Rules shall impose no artificial boundary between
the database and main memory (i.e., the user shall
not be required to be aware that the database and
main memory constitute different levels of the storage
hierarchy under the covers).

4. Declaration Sequence vs. Execution
Sequence

Business rules will depend on one another, in general,
in a variety of different ways; for example, rule A
might refer to a data item that is defined via rule B.
This fact notwithstanding, it shall be possible to
declare the rules in any physical sequence.
(Equivalently, it shall be possible to change the
sequence in which the rules are physically declared
without affecting the meaning.) Determining the
sequence in which the rules are to be executed (“fired”)
shall be the responsibility of the rule engine solely.

Observe that this prescription implies that inserting a
new rule or updating or deleting an existing rule will
require the rule engine to recompute the rule execution
sequence, in general.

5. The Rule Engine Is a DBMS

Database and application rules, at least (and to some
extent presentation rules as well), are all expressed in
terms of constructs in the database schema. Logically
speaking, in fact, they are an integral part of that
schema; indeed, it could be argued that the schema is
the rules, nothing more and nothing less. It follows
that the rule engine is just a special kind of database
management system (DBMS), and rules per se are just a
special kind of data (or metadata, rather). By virtue of
Prescription 10, however, that DBMS can be thought
of as operating at some kind of “middleware” level
within the overall system; in other words, it is a DBMS
that is at least capable of using other DBMSs and/or
file systems to hold its stored data (thereby effectively
running “on top of” those other DBMSs and/or file
systems—possibly several such at the same time).

Note: As already indicated, this last point is further
elaborated under Prescription 10.

As just stated, “rules are data” (database data, to be
precise). It follows that the well-known external vs.
conceptual vs. internal distinctions apply (thanks to
Ron Ross for drawing my attention to this point). To
be more specific:

■ The external form of a given rule is the source form of
that rule (i.e., the form in which it is originally stated to
the rule engine by the rule definer).

■ The conceptual form is a canonical representation of
the rule, perhaps as one or more statements of pure
predicate logic (a formalism that might not be suitable
at the external level for ergonomic reasons).

■ And the internal form is whatever form—or forms,
plural—the rule engine finds it convenient to keep the
rule in for storage and execution purposes.

These three levels shall be rigidly distinguished and
not confused with one another.

The external and conceptual versions of any given
rule shall include absolutely nothing that relates to,
or is logically affected by, the internal (or physical or
storage) level of the system. In particular, those
versions shall include nothing that has to do with
performance.

Since (to say it again) “rules are data,” all of the
services that are provided for database data in
general—including, e.g., conceptually centralized
management, access optimization, physical and
logical data independence, and recovery and concur-
rency controls—shall be provided for rules in particular.
In other words, standard DBMS benefits shall apply.
Here are some specific implications of this point:

■ Any given user shall need to be aware only of those
rules that are pertinent to that user (just as any given
user needs to be aware only of that portion of the data
in a given database that is pertinent to that user).

■ Rules shall be queryable and updatable (see
Prescription 7).

■ Rule consistency shall be maintained (again, see
Prescription 7).

■ Rules shall be sharable and reusable across applica-
tions (and vice versa—see Prescription 9).

Twelve Rules for Business Rules
© 2000 C. J. Date. All rights reserved.

| 5

Twelve Rules for Business Rules

6. The Rule Engine Is a Relational DBMS

It is well known—see, e.g., reference [2]—that domains
(or types) and relations are together both necessary and
sufficient to represent absolutely any data whatsoever,
at least at the conceptual level. It is also well known
that the relational operators (join, etc.) are closely
related to, and have their foundation in, the discipline
of first-order predicate logic; they therefore provide an
appropriate formalism for the declarative statement of
rules, at least at the conceptual level. It follows that it
is necessary and sufficient that the rule engine shall
be, specifically, a relational DBMS,3 at least at the
conceptual level.

Here are some specific consequences of the foregoing:

■ The Information Principle: The totality of data in the
database shall be represented at the conceptual level
by means of relations (and their underlying domains)
only. To say the same thing in another way, the database
at any given time shall consist of a collection of tuples;
each such tuple shall represent a proposition that (a) is
an instantiation of the predicate corresponding to the
relation in which it appears, and (b) is understood by
convention to be true.

■ The Principle of Interchangeability of Views and
Base Relations: The system shall support relational
views, which, as far as the user is concerned, “look
and feel” exactly like base relations; that is, as far as
the user is concerned, views shall have all and only the
properties that base relations have (e.g., the property of
having at least one candidate key). In particular, views,
like base relations, shall be updatable [1,2].

■ Database is a purely logical concept: The term data-
base refers to the database as perceived by the user,
not to any kind of physical construct at the physical
storage level. In the extreme, one logical database, as
the term is used in this paper, might map to any
number of physically stored databases, managed by
any number of different DBMSs, running on any number
of different machines, supported by any number of
different operating systems, and connected together
by any number of different communication networks.

■ Overall, the rule engine shall function from the user’s
point of view as an abstract machine. It shall not be
necessary to go to a lower level of detail in order to
explain any part of the functioning of that abstract
machine (i.e., the definition of that abstract machine
shall be logically self-contained).

7. Rule Management

Since rules are not just data but, more specifically,
metadata, the portion of the database in which they
are held shall conceptually be some kind of catalog. It
is convenient to refer to that portion of the database
as the rule catalog specifically. By definition, the rule
catalog shall be relational. Suitably authorized users
shall be able to access that catalog (for both retrieval
and update purposes) by means of their regular data
access interface.

Note: This prescription does not prohibit the provision of
an additional, specialized interface for rule catalog
access.

To the maximum extent logically possible, the rule
engine shall:

■ Detect and reject cycles and conflicts in the rule
catalog;

■ Optimize away redundancies in the rule catalog;

■ Permit rule catalog updates to be performed without
disruption to other system activities, concurrent or
otherwise.

See also the discussion of “standard DBMS benefits”
under Prescription 5.

8. Kinds of Constraints

Integrity constraints shall be divisible into four kinds,
as follows [1,2]:

■ A type constraint is, logically speaking, nothing more
nor less than a definition of the set of values that consti-
tute the type (domain) in question. Such a constraint
shall not mention any variables.

Note: The constraint that one type is a subtype of another
(which provides the basis for supporting inheritance of
certain properties from one type to another, of course) is
a special kind of type constraint [2]. That is, type
constraints shall include what are sometimes called
“IS A” constraints (not to be confused with “HAS A”
constraints!—again, see reference [2]) as a special case.

■ An attribute constraint is a constraint on the values a
given attribute is permitted to assume. More precisely,
an attribute constraint shall specify that the attribute in
question is of a given type (domain).

■ A relation constraint4 is a constraint on the values a
given relation is permitted to assume. Such a constraint
shall be of arbitrary complexity, except that it shall
mention exactly one variable (viz., the relation in
question).

Twelve Rules for Business Rules
© 2000 C. J. Date. All rights reserved.

6 |

Twelve Rules for Business Rules

3 Not necessarily, and ultimately not even desirably, an SQL DBMS specifically; considered as an attempt at a concrete realization of the constructs
of the abstract relational model, SQL is very seriously flawed (again, see, e.g., reference [2]).

4 More correctly referred to as a relation variable, or “relvar,” constraint (see references [1] and [2]). The term relation is unfortunately used in
common database parlance to mean sometimes a relation value, sometimes a relation variable (i.e., a relvar). While this practice can lead to
confusion, it is followed in the present paper—somewhat against the writer’s better judgment!—for reasons of familiarity.

■ A database constraint is a constraint on the values
a given database is permitted to assume. Such a
constraint shall be of arbitrary complexity, except that
it shall mention at least two variables, and all variables
mentioned shall be relations in the database.

In the case of database and relation constraints (only),
the constraint shall also be allowed to constrain tran-
sitions from one value to another. A constraint that is
not a transition constraint is a state constraint. In no
case shall a constraint explicitly mention the update
events that need to be monitored in order to enforce
the constraint; rather, determining those events shall
be the responsibility of the rule engine.

All constraints shall be satisfied at statement bound-
aries. That is, no statement shall leave the database
in such a state as to violate any state or transition
constraint, loosely speaking.

Note: See reference [2] for a more precise statement of
this requirement—in particular, for a precise explanation
of exactly what it is that constitutes a “statement” here.

As well as enforcing constraints, the rule engine shall
make its best attempt to use them for purposes of
semantic optimization [1].

9. Extensibility

Within any given rule, it shall be possible to invoke
existing applications5 as if they were builtin operators.
In other words, the system shall be extensible, and
applications, like rules, shall be sharable and reusable.

10. Platform Independence

The rule language, and rules expressed in that language,
shall be independent of specific software or hardware
platforms (other than the rule engine itself, possibly).6

The rule engine shall be responsible (a) for converting
—i.e., compiling—rules into executable code that is
appropriate to whatever hardware and software envi-
ronment happens to pertain, and (b) for assigning
individual portions of that executable code to proces-
sors within that environment appropriately. The

concept of platform independence thus embraces at
least all of the following (see reference [1]):

■ Independence of the overall implementation
environment (“system architecture independence”);

■ Hardware independence;

■ Operating system independence;

■ Transaction monitor independence;

■ Network independence;

■ Location, fragmentation, and replication independence;

■ DBMS independence.

Regarding the last of these in particular, note that it
shall be possible for an application to span several
distinct backend subsystems, running several distinct
DBMSs and/or file systems. It shall also be possible for
an application (declaratively built, of course) to access
preexisting databases and/or files. In all cases, the
necessary mappings between backend database
schemas and the rule engine’s own database schema
(and/or the rule catalog) shall themselves be specified
by means of appropriate business rules.

11. No Subversion

If an interface is supported that provides access to the
database at a level below the conceptual level (in
effect, below the level of the abstract machine that is
the rule engine), then it shall be possible to prevent
use of that interface for purposes of subverting the
system. In particular, it shall be possible to prevent the
bypassing of any integrity constraint.

12. Full Automation

Applications developed using business rules shall be
complete (loosely, “everything automatable shall be
automated”). That is, the complete set of rules for all
of the applications that are pertinent to the enterprise
in question shall constitute a complete business
model, or in other words an abstract definition of the
entire enterprise and its workings. In fact, because
rules are shared across applications and vice versa—see
Prescriptions 5 and 9—the activity of defining rules in
general can be seen not so much as a process of devel-
oping individual applications, but rather as one of
developing entire integrated application systems.

Twelve Rules for Business Rules
© 2000 C. J. Date. All rights reserved.

| 7

Twelve Rules for Business Rules

5 Refer back to the “Assumptions” section for an explanation of the term application as used in this paper.

6 It could be argued that this prescription is a straightforward logical consequence of the requirement, already articulated under Prescription 6, that
the rule engine function as an abstract machine.

Summary

By way of conclusion, here is a brief (and somewhat
simplified) summary of the twelve prescriptions.

1. Executable Rules: Rules are compilable and
executable.

2. Declarative Rules: Rules are stated declaratively.
The rule language is well designed and expressively
complete.

3. Kinds of Rules: Rules are divided into presentation,
database, and application rules. They include compu-
tations, constraints, inference rules, and possibly
stimulus/response rules.

4. Declaration Sequence vs. Execution Sequence:
Rules can be declared in any sequence. The rule
engine determines the corresponding execution
sequence.

5. The Rule Engine Is a DBMS: Rules are expressed in
terms of constructs in the database schema. The rule
engine is a special kind of DBMS; it can act as middle-
ware, using other DBMSs and/or file systems to hold
its stored data (possibly several such subsystems at the
same time). Rules exist in external, conceptual, and
internal forms; the first two of these, at least, include
nothing to do with performance. Rules are shared and
reused across applications.

6. The Rule Engine Is a Relational DBMS: At the
conceptual level, at least, the rule engine is relational.
It acts from the user’s point of view as an abstract
machine.

7. Rule Management: Rules can be queried and
updated. Insofar as is logically possible, the rule
engine detects and rejects cycles and conflicts (and
optimizes away redundancies) among the rules, and
permits rule updates to be done without disrupting
other system activities.

8. Kinds of Constraints: Constraints are divided into
type, attribute, relation, and database constraints.
Transition constraints are supported. Constraints are
satisfied at statement boundaries.

9. Extensibility: Rules can invoke existing
applications.

10. Platform Independence: The rule engine provides
independence of hardware and software platforms. It
also provides independence of the overall system
architecture, by assigning compiled code to available
processors appropriately. Applications can span
backend subsystems (possibly preexisting ones).

11. No Subversion: The database cannot be accessed
below the conceptual level in such a way as to subvert
the system.

12. Full Automation: The rule engine supports the
development of entire integrated application systems.

Acknowledgments

Thanks to Manish Chandra, Hugh Darwen, Mike
DeVries, Val Huber, Gary Morgenthaler, Ron Ross,
and Gene Wong for helpful comments on earlier
drafts of this paper and other technical assistance.

References and Bibliography

1. C. J. Date: An Introduction to Database Systems (7th
edition). Reading, Mass.: Addison-Wesley (2000).

2. C. J. Date and Hugh Darwen: Foundation for Future
Database Systems: The Third Manifesto (2nd edition).
Reading, Mass.: Addison-Wesley (2000).

3. GUIDE Business Rules Project: Final Report, revision
1.2 (October 1997).

4. James D. McCawley: Everything that Linguists Have
Always Wanted to Know about Logic (but were ashamed
to ask). Chicago, Ill.: University of Chicago Press (1981).

Twelve Rules for Business Rules

Twelve Rules for Business Rules
© 2000 C. J. Date All rights reserved.

8 |

